
EOM

ENGINEERING OPERATION& MAINTENANCE MANUAL

A1 Accu-Flo Clamped Metal Pump

Where Innovation Flows

WILDEN

Copyright

Copyright 2018 PSG[®], a Dover Company. All rights reserved.

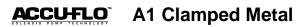
PSG reserves the right to modify the information and illustrations in this document without prior notice. The product described in this document is furnished under a license agreement or nondisclosure agreement. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or any means electronic or mechanical, including photocopying and recording, without the written permission of PSG, a Dover Company, except as described by the terms of those agreements.

This is a non-contractual document.

Trademarks

PSG and the PSG logo are registered trademarks of PSG. Wilden[®] is a registered trademark of PSG California LLC. Pro-Flo[®] SHIFT, Pro-Flo[®], and Wil-Flex[®] are registered trademarks of PSG California LLC. Chem-Fuse[™], Pure-Fuse[™], Saniflex[™], and Bunalast[™] are trademarks of PSG California LLC.

All trademarks, names, logos and service marks (collectively "trademarks") in this document are registered and unregistered trademarks of their respective owners. Nothing contained in this document should be construed as granting any license or right to use any trademark without the prior written permission of the trademark owner.


Warranty

Each and every product manufactured by Wilden is built to meet the highest standards of quality. Every pump is functionally tested to ensure integrity of operation. Wilden warrants that pumps, accessories and parts manufactured or supplied by it to be free from defects in material and workmanship for a period of five (5) years from date of installation or six (6) years from date of manufacture, whichever comes first.

For more information, and to register your Wilden pump for warranty, please visit https://www.psgdover.com/wilden/support/warranty-registration.

Certifications

CONTENTS

SECTION 1: Precautions - Read First!	4
SECTION 2: Wilden Pump Designation System	
SECTION 3: How It Works	
SECTION 4: Dimensional Drawings	7
SECTION 5: Performance	
A1T Metal Rubber-Fitted	
A1T Metal PTFE-Fitted	
A1P Metal Rubber-Fitted	10
A1P Metal PTFE-Fitted	10
70/30 Operating Conditions	11
SECTION 6: Suggested Installation, Operation, Maintenance, and Troubleshooting	12
SECTION 7: Disassembly/Reassembly	15
Pump Disassembly	14
Reassembly Hints and Tips	18
SECTION 8: Exploded View and Parts List	19
SECTION 9: Elastomer Options	23
SECTION 10: Electrical Information	23

A1 Clamped Metal

SECTION 1

PRECAUTIONS - READ FIRST!

WARNING: Always wear safety glasses when operating a pump to avoid eye injury. If diaphragm rupture occurs, material being pumped may be forced out of the air exhaust.

CAUTION: Do not apply compressed air to the exhaust port – pump will not function.

CAUTION: Do not over-lubricate air supply– excess lubrication will reduce pump performance. Pump is pre-lubed.

TEMPERATURE LIMITS:

Acetal	-29°C to 82°C	–20°F to 180°F
Buna-N [®]	-12°C to 82°C	10°F to 180°F
Bunalast™	-40°C to 82°C	-40°F to 180°F
Neoprene	-18°C to 93°C	0°F to 200°F
Nordel® EPDM	-51°C to 138°C	-60°F to 280°F
Nylon	-18°C to 93°C	0°F to 200°F
PFA	-7°C to 107°C	45°F to 225°F
Polypropylene	0°C to 79°C	32°F to 175°F
Polyurethane	-12°C to 66°C	10°F to 150°F
PVDF	-12°C to 107°C	10°F to 225°F
Saniflex™	-29°C to 104°C	–20°F to 220°F
SIPD PTFE with EPDM-backed	4°C to 137°C	40°F to 280°F
SIPD PTFE with Neoprene-	4°C to 93°C	40°F to 200°F
backed		
PTFE ¹	4°C to 104°C	40°F to 220°F
FKM	–40°C to 177°C	–40°F to 350°F
Wil-Flex®	-40°C to 107°C	-40°F to 225°F

 $^{^*4^{\}circ}\text{C}$ to 149°C (40°F to 300°F) - 13 mm (1/2") and 25 mm (1") models only.

NOTE: Not all materials are available for all models. See "Wilden Pump Designation System" material options for your pump.

CAUTION: When choosing pump materials, be sure to check the temperature limits for all wetted components. Example: FKM has a maximum limit of 177°C (350°F), but polypropylene has a maximum limit of only 79°C (175°F).

CAUTION: Maximum temperature limits are based on mechanical stress only. Certain chemicals will reduce maximum safe operating temperatures significantly. Consult the Chemical Resistance Guide for chemical compatibility and temperature limits.

CAUTION: All Wilden pumps are capable of passing solids. Use a strainer on the pump intake to ensure that the pump's rated solids capacity is not exceeded.

CAUTION: Do not exceed 8.6 bar (125 psig) air supply pressure.

CAUTION: The process fluid and cleaning fluids must be chemically compatible with all wetted pump components. Consult Chemical Resistance Guide.

CAUTION: Thoroughly flush pumps before installing them into process lines. Clean and/or sanitize FDA- and USDA- approved pumps before using them.

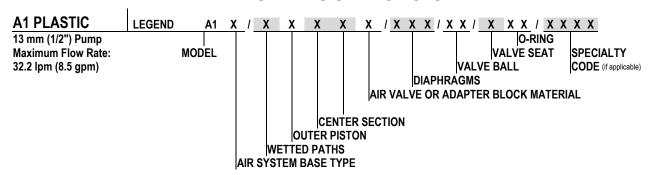
CAUTION: Before attempting any maintenance or repair, disconnect the compressed air line to the pump and allow all air pressure to bleed from the pump. Disconnect all intake, discharge, and air lines. Drain the pump by turning it upside down and allowing any fluid to flow into a suitable container. Be aware of any hazardous effects of contact with your process fluid.

CAUTION: Before attaching the air line to the pump, blow out the air line for 10 to 20 seconds to make sure all pipeline debris is clear. Use an in-line air filter. A 5μ (micron) air filter is recommended.

CAUTION: Accu-Flo pumps cannot be used in submersible applications.

CAUTION: Before installation, tighten all hardware.

CAUTION: Only explosion proof (NEMA 7) solenoid valves should be used in areas where explosion proof equipment is required.


- NOTE: A1 Plastic PTFE-fitted pumps come standard from the factory with expanded PTFE gaskets. (See "Gasket Kit Installation")
- NOTE: Materials of construction and elastomer material may influence suction lift parameters. Please refer to "Performance" for specifics.
- NOTE: When installing PTFE diaphragms, it is important to tighten outer pistons simultaneously (turning in opposite directions) to ensure tight fit. (See "Maximum Torque Specifications").
- NOTE: Some PTFE-fitted pumps come standard from the factory with expanded PTFE gaskets installed in the diaphragm bead of the liquid chamber. PTFE gaskets cannot be re-used.
- NOTE: In the event of a power failure, close the shut-off valve if you do not want the pump to restart when the power returns.

WARNING: This product can expose you to chemicals including Nickel, Chromium, Cadmium, or Cobalt, which are known to the State of California to cause cancer and/or birth defects or other reproductive harm. For more information, go to www.P65Warnings.ca.gov.

WILDEN PUMP DESIGNATION SYSTEM

MATERIAL CODES

MODEL

A1 = METAL ACCU-FLO™

AIR SYSTEM BASE TYPE

T = TURBO-FLO™ P = PRO-FLO®

B = ADAPTER BLOCK

WETTED PATH

A = ALUMINUM S = STAINLESS STEEL

OUTER PISTON

A = ALUMINUM S = STAINLESS STEEL Z = NO OUTER PISTON

CENTER SECTION

PP = POI YPROPYI FNF

AIR VALVE

A = ALUMINUM (available for A1T only)

P = POLYPROPYLENE (Available for A1B and A1P only)

U = UHMW (available for A1B only)

L = ACETAL (Available for A1B and A1P only)

DIAPHRAGMS

BNS = BUNA-N® (RED DOT)

FSS = SANIFLEX™ [HYTRÉL® (CREAM)]

PUS = POLYURETHANE (CLEAR)

THU = PTFE W/HIGH-TEMP BUNA-N® BACK-UP

TNU = PTFE W/NEOPRENE BACK-UP (WHITE) THU = PTFE W/NEOPRENE BACK-UP O-RING, IPD

(WHITE)

VTS = FKM (WHITE DOT)

WFS = WIL-FLEX® [SANTOPRENE® (THREE BLACK DOTS)]

VALVE BALLS

BN = BUNA-N (RED DOT)

FS = SANIFLEX™ [HYTREL® CREAM)]

PU = POLYURETHANE (BROWN)

TF = PTFE (WHITE)

VT = FKM (WHITE DOT)

 $WF = WIL - FLEX^{TM} (ORANGE)$

VALVE SEATS

A = ALUMINUM

H = ALLOY C

S = STAINLESS STEEL

VT = FKM (WHITE DOT)

O-RINGS

BN = BUNA-N® (RED DOT)

FS = SANIFLEX[™] [HYTRÉL (CREAM)]

PU = POLYURETHANE (BROWN)

TV = PTFF FNCAP FKM®

WF = WIL-FLEX™ (SANTOPRENE®)

SPECIALTY CODES

0124 - Saniflo™ FDA, Accu-Flo™, 24V DC x-proof coil, Intl., PTB approved 0125 - Saniflo™ FDA, Accu-Flo™, 24V DC coil 0126 - Saniflo™ FDA, Accu-Flo™, 24V DC x-proof coil 0127 - Saniflo™ FDA, Accu-Flo™, 110V AC coil 0128 - Saniflo™ FDA, Accu-Flo™, 24V AC / 12V DC coil 0129 - Saniflo™ FDA, Accu-Flo™, 24V AC / 12V DC x-proof coil 0130 - Saniflo™ FDA, Accu-Flo™, 110V AC x-proof coil 0142 - Accu-Flo™, valve body only, no coil, BSPT, discharge facing forward 0143 - Accu-Flo™, valve body only, no coil, BSPT 0144 - Accu-Flo™, valve XC coil, BSPT 0145 - Accu-Flo™, 110V AC x-proof coil, Wil-Gard II™ 110V 0148 - Accu-Flo™, valve body ONLY, no coil BSPT 0149 - Accu-Flo™, valve valve body ONLY, no coil BSPT 0149 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0149 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof valve body ONLY, no coil BSPT 0150 - Accu-Flo™, x-proof x-pr 0124 - Saniflo™ FDA, Accu-Flo™, 24V DC x-proof coil, Intl., PTB approved 0151 - Accu-Flo™. 24V AC / 12V DC coil 0169 - Accu-Flo™, 110V AC coil, PFA coated hardware 0151 - Accu-Flo™, 24V AC / 12V DC coil
0153 - Accu-Flo™, 24V AC / 12V DC x-proof coil
0154 - Accu-Flo™, 24V DC x-proof coil
0155 - Accu-Flo™, 110V coil
0156 - Accu-Flo™, 110V AC x-proof coil
0157 - Accu-Flo™, 24V DC x-proof coil, Intl., PTB approved
0158 - Accu-Flo™, 24V DC x-proof coil, Intl., PTB approved, BSPT
0160 - Accu-Flo™, 24V DC coil, BSPT
0161 - Accu-Flo™, 24V DC x-proof coil, BSPT
0162 - Accu-Flo™, 24V DC coil, BSPT
0163 - Accu-Flo™, 24V DC coil, BSPT
0164 - Accu-Flo™, 24V DC coil, BSPT
0166 - Accu-Flo™, 10V AC coil, Wil-Gard II™ sensor wires
0166 - Accu-Flo™ 24V DC coil Wil-Gard II™ 10V 0170 - Accu-Flo™, 110V AC x-proof coil, PFA coated hardware 0175 - Accu-Flo™, 24V DC coil, BSPT, discharge & inlet facing 0180 - Accu-Flo™, 24V AC / 12V DC coil, PFA coated hardware 0181 - Accu-Flo™, 24V AC / 12V DC x-proof coil, PFA coated hardware 0183 - Accu-Flo™, 24V AC / 12 V DC x-proof coil, Wil-Gard II™ 0184 - Accu-Flo™. 24V DC coil. PFA coated hardware 0185 - Accu-Flo™, 24V DC x-proof coil, PFA coated hardware 0166 - Accu-Flo™, 24V DC coil, Wil-Gard II™ 110V 0167 - Accu-Flo™, 24V AC / 12V DC coil, Wil-Gard II™110V 0512 - Adapter block, no muffler, Pro-Flo® center Section 0514 - Adapter block, no muffler, standard center section 0168 - Accu-Flo™, 110V AC coil, Wil-Gard II™ 110V 0150 - Accu-Flo™, 24V DC Coil 0516 - Adapter block, no muffler, turbo center section

! NOTE: Most elastomeric materials use colored dots for identification. ! NOTE: Not all models are available with all material options

THE THREE ACCU-FLO™ OPTIONS POSSIBLE:

1. AxT: This is the same Accu-Flo configuration that has been available from Wilden since March 1994. An aluminum solenoid valve is attached directly to a T-series center section and the shaft/inner piston configuration is altered.

2. AxP: This option uses a plastic (polypropylene or acetal) spacer that is assembled between the Pro-Flo® air valve and the Pro-Flo® center section. The same solenoid operator – coil assembly that is found on AxT pumps is assembled on the plastic spacer discussed above for electronic interface. This spacer together with the Pro-Flo® air valve replaces the aluminum air valve used in the AxT with a more chemically resistant option. Spacers will be available in the 1/4", 1/2", and 1" sizes. The use of the Pro-Flo® ADS provides additional, flow in most applications (refer to EOM for details).

Santoprene® is a registered trademark of Monsanto Company, licensed to Advanced Elastomer Systems, L.P. Hytrel® is a registered trademark of DuPont Dow Elastomers.

The AxP provides the Pro- Flo® benefits of lower start-up pressure, reduced blow-by, and increased life.

3. AxB: This option uses an Adapter Block in place of an air valve. A user supplied, 4way pneumatic valve must be used in conjunction with this technology. This configuration enables the solenoid valve to be remotely installed, preventing chemical attack in very aggressive environments. Adapter Blocks are available for both the T and P-series center sections in all pump sizes. (See EOM AxB for details.)

NOTE: The "x" in the above Accu-Flo descriptions is used in place of a pump model size. See Pump Designation System chart above.

Buna-N and FKM are registered trademarks of DuPont Dow Elastomers.

WII -10050-F-02 5

HOW IT WORKS - AIR-OPERATED DOUBLE-DIAPHRAGM PUMP

The Wilden diaphragm pump is an air-operated, positive displacement, self-priming pump. These drawings show flow pattern through the pump upon its initial stroke. It is assumed the pump has no fluid in it prior to its initial stroke.

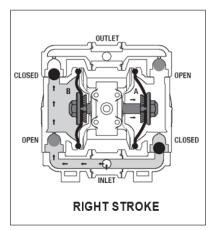


FIGURE 1 When the solenoid is energized, the air valve directs pressure to the back side of diaphragm A. The compressed air is applied directly to the liquid column separated by elastomeric diaphragms. The diaphragm acts as a membrane between the compressed air and the liquid, balancing the load and removing mechanical stress from the diaphragm. The compressed air moves the diaphragm away from the center section of the pump. The opposite diaphragm is pulled in by the shaft connected to the pressurized diaphragm. Diaphragm B is on its suction stroke; air behind the diaphragm has been forced out to the atmosphere through the exhaust port. The movement of diaphragm B toward the center section of the pump creates a vacuum within chamber B. Atmospheric pressure forces fluid into the inlet manifold forcing the inlet valve ball off of its seat. Liquid is free to move past the inlet valve ball and fill the liquid chamber (see shaded area).

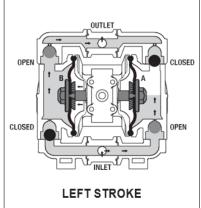


FIGURE 2 When the solenoid valve is deenergized, the air valve redirects pressurized air to the back side of diaphragm B. The pressurized air forces diaphragm B away from the center section while pulling diaphragm A to the center section. Diaphragm B is now on its discharge stroke. Diaphragm B forces the inlet valve ball onto its seat due to the hydraulic forces developed in the liquid chamber and manifold of the pump. These same hydraulic forces lift the discharge valve ball off of its seat, while the opposite discharge valve ball is forced onto its seat, forcing fluid to flow through the pump discharge. The movement of diaphragm A toward the center section of the pump creates a vacuum within liquid chamber A. Atmospheric pressure forces fluid into the inlet manifold of the pump. The inlet valve ball is forced off of its seat allowing the fluid being pumped to fill the liquid chamber.

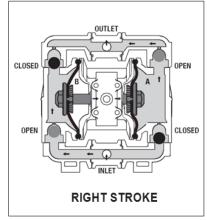
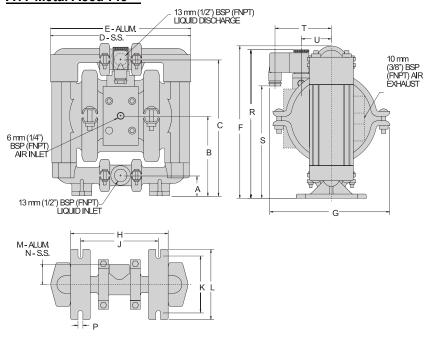
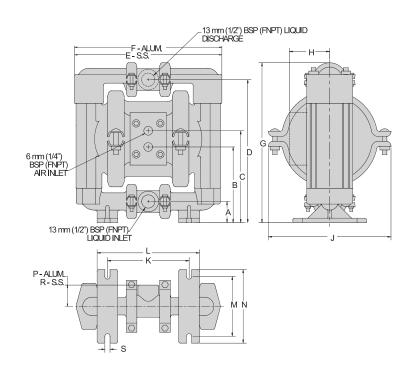



FIGURE 3 Once the solenoid valve is reenergized, the air is redirected to the back side of diaphragm A, which starts diaphragm B on its exhaust stroke. As the pump reaches its original starting point, each diaphragm has gone through one intake and one discharge stroke. This constitutes one complete pumping cycle. The pump may take several cycles to completely prime depending on the conditions of the application.

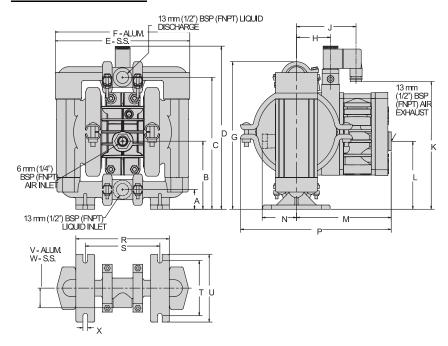
DIMENSIONAL DRAWING


A1T Metal Accu-Flo™

DIMENSIONS

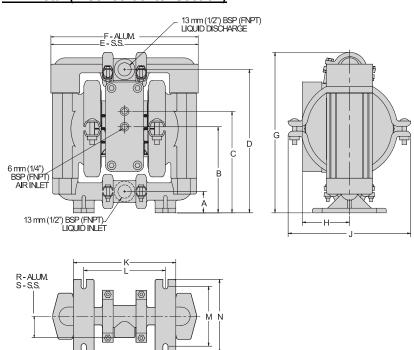
	METRIC	STANDARD
ITEM		-
	(mm)	(inch)
Α	28	1.1
В	109	4.3
С	198	7.8
D	203	8.0
Е	208	8.2
F	224	8.8
G	175	6.9
H	140	5.5
J	112	4.4
K	84	3.3
L	102	4.0
М	30	1.2
N	30	1.2
Р	8	0.3
R	226	8.9
S	163	6.4
T	81	3.2
U	46	1.8

A1B Metal (T-Series Center Section)


DIMENSIONS

ITEM	METRIC (mm)	STANDARD (inch)		
Α	28	1.1		
В	104	4.1		
С	127	5.0		
D	198	7.8		
Е	203	8.0		
F	208	8.2		
G	224	8.8		
Н	56	2.2		
J	175	6.9		
K	140	5.5		
L	112	4.4		
М	84	3.3		
N	102	4.0		
Р	30	1.2		
R	30	1.2		
S	8	0.3		

DIMENSIONAL DRAWING


A1P Metal Accu-Flo™

DIMENSIONS

ITEM	METRIC	STANDARD		
I I E IVI	(mm)	(inch)		
Α	28	1.1		
В	102	4.0		
С	198	7.8		
C D E F	241	9.5		
Е	203	8.0		
F	208	8.2		
G	224	8.8		
Н	51	2.0		
J	89	3.5		
K	191	7.5		
L	102	4.0		
М	142	5.6		
N	56	2.2		
Р	226	8.9		
R	140	5.5		
S T	112	4.4		
	84	3.3		
U V	102	4.0		
	30	1.2		
W	30	1.2		
Χ	8	0.3		

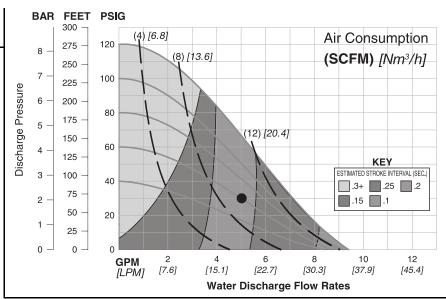
A1B Metal (P-Series Center Section)

DIMENSIONS

ITEM	METRIC	STANDARD		
IIEW	(mm)	(inch)		
Α	28	1.1		
В	102	4.0		
С	198	7.8		
D	241	9.5		
D E	203	8.0		
F	208	8.2		
G	224	8.8		
Н	51	2.0		
J	89	3.5		
K	191	7.5		
L	102	4.0		
М	142	5.6		
Ν	56	2.2		
Р	226	8.9		
R	140	5.5		
S T	112	4.4		
	84	3.3		
U	102	4.0		
V	30	1.2		
W	30	1.2		
Χ	8	0.3		

WILDEN

SECTION 5


A1T METAL RUBBER-FITTED

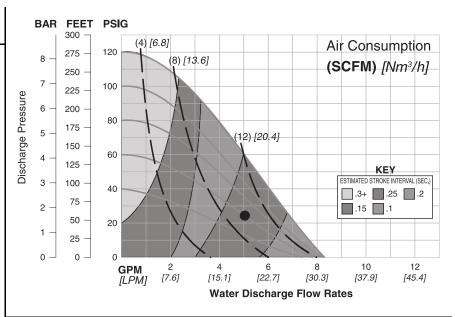
Ship Weights	Aluminum 6 kg (13 lbs)
	Stainless Steel 9 kg (20 lbs)
	Alloy C 10 kg (22 lbs)
Air Inlet	6 mm (1/4")
Inlet	13 mm (1/2")
Outlet	13 mm (1/2")
Suction Lift	4.5 m Dry (14.7')
	9.7 m Wet (31.8')
Disp. per Stroke1	0.05 L (0.013 gal)
Max. Flow Rate	35.6 lpm (9.4 gpm)
Max. Size Solids	1.6 mm (1/16")

¹Displacement per stroke was calculated at 4.8 bar (70 psig) air inlet pressure against a 2 bar (30 psig) head pressure.

Example: To pump 18.9 lpm (5 gpm) against a discharge pressure head of 2.1 bar (30 psig) requires 4.1 bar (60 psig) and 15.3 Nm3/h (9.0 scfm) air consumption. (See dot on chart.)

PERFORMANCE

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.


Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

A1T METAL PTFE-FITTED

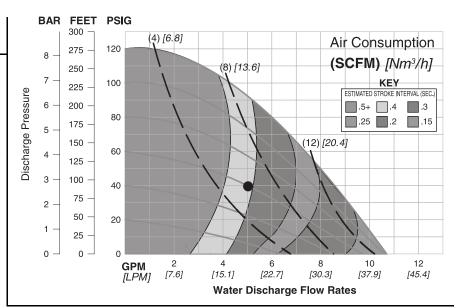
Ship Weights	Aluminum 6 kg (13 lbs)
	Stainless Steel 9 kg (20 lbs)
	Alloy C 10 kg (22 lbs)
Air Inlet	6 mm (1/4")
Inlet	13 mm (1/2")
Outlet	13 mm (1/2")
Suction Lift	3.5 m Dry (11.3')
	9.3 m Wet (30.6')
Disp. per Stroke1	0.05 L (0.014 gal)
Max. Flow Rate	31.4 lpm (8.3 gpm)
Max. Size Solids	1.6 mm (1/16")

¹Displacement per stroke was calculated at 4.8 bar (70 psig) air inlet pressure against a 2 bar (30 psig) head pressure.

Example: To pump 18.9 lpm (5 gpm) against a discharge pressure head of 1.7 bar (25 psig) requires 4.1 bar (60 psig) and 16.2 Nm3/h (9.5 scfm) air consumption. (See dot on chart.)

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.

Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.


A1P METAL RUBBER-FITTED

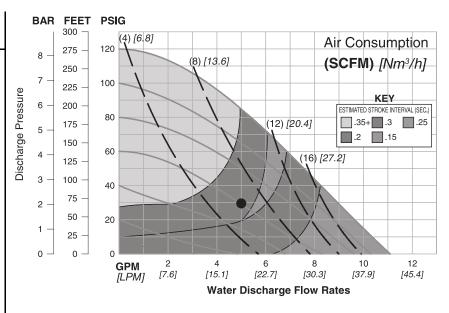
Ship Weights	Aluminum 6 kg (13 lbs)
	Stainless Steel 9 kg (20 lbs)
	Alloy C 10 kg (22 lbs)
Air Inlet	6 mm (1/4")
Inlet	13 mm (1/2")
Outlet	13 mm (1/2")
Suction Lift	6.6 m Dry (21'6')
	9.7 m Wet (31.8')
Disp. per Stroke1	0.12 L (0.031 gal)
Max. Flow Rate	
Max. Size Solids	1.6 mm (1/16")

¹Displacement per stroke was calculated at 4.8 bar (70 psig) air inlet pressure against a 2 bar (30 psig) head pressure.

Example: To pump 18.9 lpm (5 gpm) against a discharge pressure head of 2.8 bar (40 psig) requires 4.1 bar (60 psig) and 10.2 Nm3/h (6.0 scfm) air consumption. (See dot on chart.)

PERFORMANCE

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.


Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

A1P METAL PTFE-FITTED

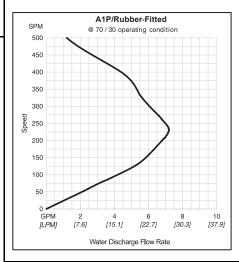
Ship Weights	Aluminum 6 kg (13 lbs)
	Stainless Steel 9 kg (20 lbs)
	Alloy C 10 kg (22lbs)
Air Inlet	6 mm (1/4")
Inlet	13 mm (1/2")
Outlet	13 mm (1/2")
Suction Lift	5.7 m Dry (18.7')
	9.2 m Wet (30.1')
Disp. per Stroke1	0.09 L (0.024 gal)
Max. Flow Rate	39 lpm (10.3 gpm)
Max. Size Solids	1.6 mm (1/16")

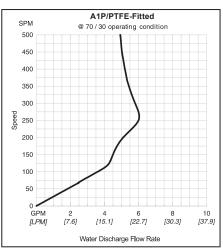
¹Displacement per stroke was calculated at 4.8 bar (70 psig) air inlet pressure against a 2.1 bar (30 psig) head pressure.

Example: To pump 18.9 lpm (5 gpm) against a discharge pressure head of 2.1 bar (30 psig) requires 4.1 bar (60 psig) and 10.2 Nm3/h (6.0 scfm) air consumption. (See dot on chart.)

Flow rates indicated on chart were determined by pumping water. For optimum life and performance, pumps should be specified so that daily operation parameters will fall in the center of the pump's performance curve.

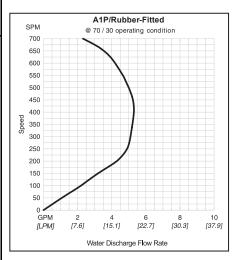
Caution: Do not exceed 8.6 bar (125 psig) air supply pressure.

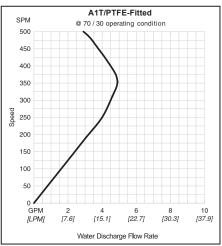




70/30 OPERATING CONDITIONS

A1P METAL ACCU-FLO


These curves demonstrate the flow created when the stroke rate is modified under static air and fluid pressure condition. This curve can be applied to different pressure conditions to estimate the change in flow due to stroke rate.



A1T METAL **ACCU-FLO**

These curves demonstrate the flow created when the stroke rate is modified under static air and fluid pressure condition. This curve can be applied to different pressure conditions to estimate the change in flow due to stroke rate.

SUGGESTED INSTALLATION, OPERATION, MAINTENANCE AND TROUBLESHOOTING

All Wilden pumps are designed to meet the performance requirements of even the most demanding pumping applications. They have been designed and manufactured to the highest standards and are available in a variety of liquid path materials to meet your chemical resistance needs. Refer to "Performance" for an in-depth analysis of the performance characteristics of your pump. Wilden offers the widest variety of elastomer options in the industry to satisfy temperature, chemical compatibility, abrasion resistance and flex concerns.

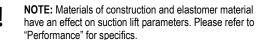
The suction pipe size should be at least equal to or larger than the diameter size of the suction inlet on your Wilden pump. The suction hose must be a non-collapsible, reinforced type because these pumps are capable of pulling a high vacuum. Discharge piping should also be equal to or larger than the diameter of the pump discharge, which will help reduce friction losses.

CAUTION: All fittings and connections must be airtight. Otherwise, pump suction capability will be reduced or lost.

Months of careful planning, study and selection efforts can result in unsatisfactory pump performance if installation details are left to chance. You can avoid premature failure and long-term dissatisfaction by exercising reasonable care throughout the installation process.

Location

Noise, safety and other logistical factors usually dictate where equipment will be situated on the production floor. Multiple installations with conflicting requirements can result in congestion of utility areas, leaving few choices for additional pumps. Within the framework of these and other existing conditions, locate every pump in such a way that the following six key factors are balanced against each other to maximum advantage:


- Access: First, the location should be accessible. If it's easy to reach the pump, maintenance personnel will be able to perform routine inspections and adjustments more easily. If major repairs become necessary, ease of access can play a key role in speeding the repair process and reducing total downtime.
- Air Supply: Every pump location should have an air line large enough to supply the volume of air necessary to achieve the desired pumping rate. For best results, the pumps should use a 5μ (micron) air filter, needle valve and regulator. The use of an air filter before the pump will ensure that the majority of any pipeline contaminants will be eliminated.
- Solenoid Operation: When operation is controlled by a solenoid valve in the air line, three-way valves should be used. This valve allows trapped air between the valve and the pump to bleed off, which improves pump performance. You can estimate pumping volume by counting the number of strokes per minute, and then multiplying that figure by the displacement per stroke.
- Muffler: Using the standard Wilden muffler, sound levels are reduced below OSHA specifications. You can use other mufflers to reduce sound levels farther, but they usually reduce pump performance.
- Elevation: Selecting a site that is well within the pump's dynamic lift capability will assure that loss-of-prime issues will

- be eliminated. In addition, pump efficiency can be adversely affected if proper attention is not given to site location.
- Piping: Final determination of the pump site should not be made until the piping challenges of each possible location have been evaluated. The impact of current and future installations should be considered ahead of time to make sure that inadvertent restrictions are not created for any remaining sites.

The best choice possible will be a site involving the shortest and straightest hook-up of suction and discharge piping. Unnecessary elbows, bends and fittings should be avoided. Pipe sizes should be selected to keep friction losses within practical limits. All piping should be supported independently of the pump. In addition, the piping should be aligned to avoid placing stress on the pump fittings.

Flexible hose can be installed to aid in absorbing the forces created by the natural reciprocating action of the pump. If the pump is to be bolted down to a solid location, a mounting pad placed between the pump and the foundation will assist in minimizing pump vibration. Flexible connections between the pump and rigid piping will also assist in minimizing pump vibration. If quick-closing valves are installed at any point in the discharge system, or if pulsation within a system becomes a problem, a surge suppressor (SD Equalizer) should be installed to protect the pump, piping and gauges from surges and water hammer.

If the pump is to be used in a self-priming application, make sure that all connections are airtight and that the suction lift is within the model's ability.

When pumps are installed in applications involving flooded suction or suction head pressures, a gate valve should be installed in the suction line to permit closing of the line for pump service.

Pumps in service with a positive suction head are most efficient when inlet pressure is limited to 0.5–0.7 bar (7–10 psig). Premature diaphragm failure may occur if positive suction is 0.7 bar (10 psig) and higher.

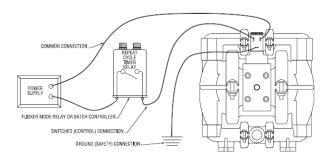
CAUTION: All Wilden pumps are capable of passing solids. Use a strainer on the pump intake to ensure that the pump's rated solids capacity is not exceeded.

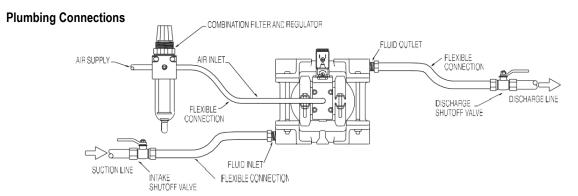
CAUTION: Do not exceed 8.6 bar (125 psig) air supply pressure.

CAUTION: Pro-Flo[®] and Accu-Flo[™] pumps do not have single-point exhaust option and are not submersible.

SUGGESTED INSTALLATION, OPERATION, MAINTENANCE AND TROUBLESHOOTING

Operating Principles Behind Accu-Flo™ Pumps


When the solenoid is unpowered, one air chamber is pressurized with air, while the opposite chamber is exhausted. When electric power is applied, the solenoid shifts, and the pressurized air chamber is exhausted while the opposite chamber is pressurized. By alternately applying and removing power, the solenoid-operated pump runs like a standard Wilden pump.


The speed of the pump is controlled electrically. Since each stroke is controlled by an electrical signal, the pump is ideal for batching and other electrically controlled dispensing applications.

Although the speed of the pump is controlled electrically, the air pressure is important. Air pressure displaces the fluid, and if the pressure is insufficient to complete the physical stroke before an electronic impulse signals the pump to shift, the stroke will not be completed, and the displacement per stroke will be reduced. This does not harm the unit in any way, but it may cause inaccuracy when attempting to batch specific quantities with high precision if this effect is not taken into account.

There are three coil voltage options available. One coil allows for 24V DC operation. The second coil option allows for operation with either 12V DC or 24V AC at 60 Hz and the third coil option allows for 110V AC operation.

Electrical Connections

Operation

A red button on the side of the air valve is a manual override; when actuated it will shift the valve as if an electric current had actuated the solenoid.

A muffler can be installed to reduce the amount of noise generated by the pump. Use of the specified Wilden muffler will reduce noise levels below OSHA specifications.

Records

When service is required, a record should be made of all necessary repairs and replacements. Over a period of time, such records can become a valuable tool for predicting and preventing future maintenance problems and unscheduled downtime. In addition, accurate records make it possible to identify pumps that are poorly suited to their applications.

Maintenance and Inspections

Since each application is unique, maintenance schedules may be different for every pump. Frequency of use, line pressure, viscosity and abrasiveness of process fluid all effect the parts life of a Wilden pump. Periodic inspections have been found to offer the best means for preventing unscheduled pump downtime. Personnel familiar with the pump's construction and service should be informed of any abnormalities that are detected during operation. Internal maintenance is not recommended for Accu-Flo™ solenoid air valves. When worn or damaged, a new air valve body, coil or terminal connector must be purchased. Please consult section 9 for part numbers.

SUGGESTED INSTALLATION, OPERATION, MAINTENANCE AND TROUBLESHOOTING

Troubleshooting

Pump will not run or runs slowly.

- Remove plug from pilot spool exhaust.
- Ensure that the air inlet pressure is at least 0.4 bar (5 psig) above startup pressure and that the differential pressure (the difference between air inlet and liquid discharge pressures) is not less than 0.7 bar (10 psig).
- Check air inlet filter for debris (see "Suggested Installation, Operation, Maintenance and Troubleshooting").
- Check for extreme air leakage (blow by) that would indicate worn seals/bores in the air valve, pilot spool and main shaft.
- Disassemble the pump and check for obstructions in the air passageways or objects that would obstruct the movement of internal parts.
- 6. Check for sticking ball check valves.
 - If material being pumped is not compatible with pump elastomers, swelling may occur. Replace ball check valves and seals with proper elastomers.
 - Also, as the check valve balls wear out, they become smaller and can become stuck in the seats. In this case, replace balls and seats.
- Check for any broken inner piston that would cause the air valve spool to be unable to shift.

Pump runs, but little or no product flows.

- Check for pump cavitation. Slow pump speed down to allow thick material to flow into liquid chambers.
- 2. Verify that vacuum required to lift liquid is not greater than the vapor pressure of the material being pumped (cavitation).
- 3. Check for sticking ball check valves.
 - If material being pumped is not compatible with pump elastomers, swelling may occur. Replace ball check valves and seals with proper elastomers.
 - Also, as the check valve balls wear out, they become smaller and can become stuck in the seats. In this case, replace balls and seats.

Pump air valve freezes.

- Check for excessive moisture in the compressed air.
 - Either install a dryer or a hot air generator for compressed air.
 - Alternatively, you may use coalescing filter to remove the water from the compressed air in some applications.

Air bubbles in pump discharge.

- Check for a ruptured diaphragm.
- Check tightness of outer pistons (see "Disassembly/Reassembly").
- Check tightness of fasteners and integrity of O-rings and seals, especially at intake manifold.
- 4. Ensure pipe connections are airtight.

Product comes out air exhaust.

- 1. Check for a diaphragm rupture.
- 2. Check the tightness of the outer pistons to the shaft.

Solenoid Troubleshooting

- Solenoid buzzes or solenoid burnout.
 Incorrect voltage, faulty or dirty solenoid.
- Solenoid valve fails to shift electrically but shifts with manual override.

Incorrect voltage, defective coil or wiring.

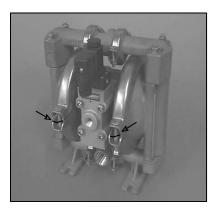
- Valve shifts but fails to return.
 Broken spring, mechanical binding.
- Excessive leaking from air valve vent.
 Worn seals in air valve.

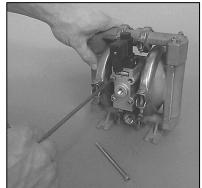
PUMP DISASSEMBLY

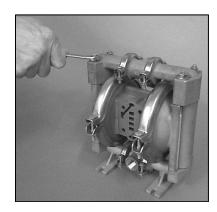
Tools Required:

- 5/16" Wrench
- 3/8" Box Wrench
- 7/16" Wrench
- 3/16" Allen Wrench
- Adjustable Wrench
- Vise equipped with soft jaws (such as plywood, plastic or other suitable material)

DISASSEMBLY / REASSEMBLY


CAUTION: Before attempting any maintenance or repair, disconnect the compressed air line to the pump and allow all air pressure to bleed from the pump. Disconnect all intake, discharge, and air lines. Drain the pump by turning it upside down and allowing any fluid to flow into a suitable container. Be aware of any hazardous effects of contact with your process fluid.

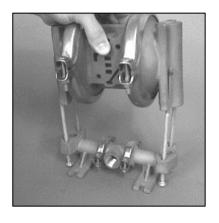

The Wilden model A1 has a 13 mm (1/2") inlet and outlet. The single-piece center section, consisting of center block and air chambers, is molded of nylon, polypropylene or acetal. All fasteners and hardware are stainless steel. All O-rings used in the pump are of a special material and shore hardness which should only be replaced with factory-supplied parts.


NOTE: Your specific pump model may vary from the configuration shown; however, pump disassembly procedure will be the same.

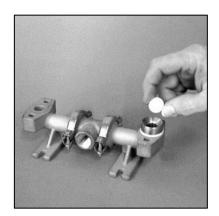
NOTE: The model used for these instructions incorporates rubber diaphragms, balls, and seats. Models with PTFE diaphragms, balls and seats are the same except where noted.

NOTE: Replace worn parts with genuine Wilden parts for reliable performance.

Step 1


Before starting disassembly, mark a line from each liquid chamber to its corresponding air chamber. This line will assist in proper alignment during reassembly.

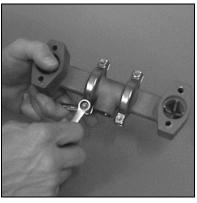
Step 2

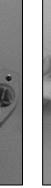

Using the 3/16" Allen Wrench, remove air valve bolts. Inspect air valve assembly for wear or damage.

Step 3

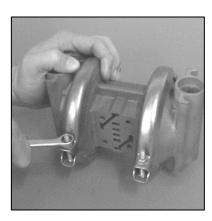
Utilizing the 3/8" box wrench, start by removing the four long carriage bolts that hold the top and bottom manifolds to the center section.

Step 4


Remove the top manifold and lift the center section off the inlet manifold.



Remove the discharge valve balls, seats and O-rings from the discharge manifold and inspect for nicks, gouges, chemical attack and/or abrasive wear. Replace worn parts with genuine Wilden parts for reliable performance.


Step 6

Remove and inspect the seat, seat O-ring, and valve ball. Check for nicks, gouges, chemical attack or abrasive wear. Replace worn parts with genuine Wilden parts for reliable performance.

Step 7

Normally the inlet and discharge manifold should not be disassembled during regular pump maintenance. Should this be necessary completely remove and disassemble manifold clamp bands.

Step 8

Inspect O-rings for wear or damage and replace if necessary.

Step 9

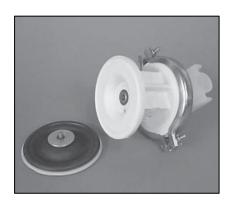
Use a 7/16" wrench to remove one set of clamp bands that secure one liquid chamber to the one-piece center section.

DISASSEMBLY / REASSEMBLY

Step 10

Lift the liquid chamber away from the center section to expose the diaphragm and outer piston.

Step 11


Using an adjustable wrench, or by rotating the diaphragm by hand, remove the diaphragm assembly from the center section.

Step 12A

NOTE: Due to varying torque values, one of the following two situations may occur:

1) The outer piston, diaphragm and inner piston remain attached to the shaft and the entire assembly can be removed from the center section.

Step 12B

2) The outer piston, diaphragm, inner piston, and disc spring separate from the shaft which remains connected to the opposite side diaphragm assembly (Figure 12B). PTFE-fitted pumps come standard with back-up diaphragms.

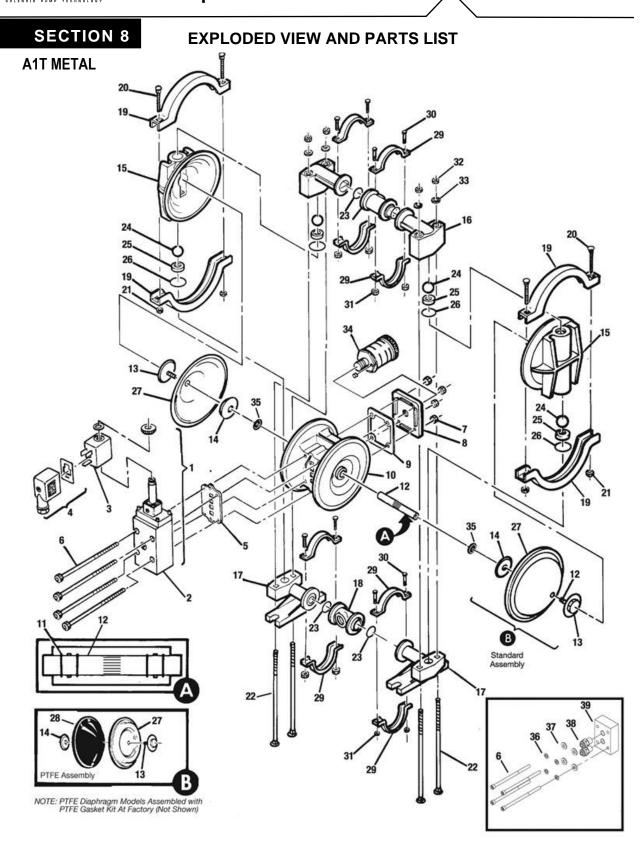
NOTE: Disc spring not shown on Figure 12B.

Step 13

To remove the diaphragm assembly from the shaft, secure shaft with soft jaws (a vise fitted with plywood or other suitable material) to ensure shaft is not nicked, scratched, or gouged. Using an adjustable wrench, remove diaphragm assembly from shaft. Inspect all parts for wear and replace with genuine Wilden parts if necessary.

DISASSEMBLY / REASSEMBLY

REASSEMBLY HINTS AND TIPS


Upon performing applicable maintenance to the air distribution system, the pump can now be reassembled. Please refer to the disassembly instructions for photos and parts placement.

To reassemble the pump, follow the disassembly instructions in reverse order. The air distribution system needs to be assembled first, then the diaphragms and finally the wetted path. The applicable torque specifications are on this page.

The following tips will assist in the assembly process:

- Clean the inside of the center section shaft bore to ensure no damage is done to new shaft seals.
- Stainless bolts should be lubed to reduce the possibility of seizing during tightening.
- Level the water chamber side of the intake/discharge manifold to ensure a proper sealing surface. This is most easily accomplished by placing them on a flat surface prior to tightening their clamp bands to the desired torque (see this page for torque specs).
- Be sure to tighten outer pistons simultaneously on PTFEfitted pumps to ensure proper torque values.
- Ensure proper mating of liquid chambers to manifolds prior to tightening vertical bolts. Overhang should be equal on both sides.
- Apply a small amount of removable threadlocker to the threads of the shaft prior to assembling the diaphragms and outer pistons.

Maximum Torque Specifications					
Description	Torque				
Solenoid Air Valve (Turbo-Flo™)	3.4 N·m [30 in-lbs]				
Solenoid Air Valve (Pro-Flo®)	3.1 N·m [27 in-lbs]				
Adapter Block Air Valve	3.1 N·m [27 in-lbs]				
Outer Piston	14.1 N·m [125 in-lbs]				
Small Clamp Band	1.7 N·m [15 in-lbs]				
Large Clamp Band (Rubber-fitted)	9.0 N·m [80 in-lbs]				
Large Clamp Band (PTFE-fitted)	13.6 N·m [120 in-lbs]				
Vertical Bolts	14.1 N·m [125 in-lbs]				

EXPLODED VIEW AND PARTS LIST

		Rubber-Fitted		PTFE-Fitted			Food Processing			
Item	Part Description	Qty. Per	A1T/AAYYA/0150	A1T/SSYYA/0150	A1T/HHYYA/0150	A1T/AAYYA/0150	A1T/SSYYA/0150	A1T/HHYYA/0150	A1T/SSYYA/0125	A1T/SSYYA/0125
iteiii	•	Pump	P/N	P/N	P/N	P/N	P/N	P/N	Saniflex™ P/N	PTFE P/N
1	24 Volt DC Valve Assembly ¹	1	01-2000-99-150	01-2000-99-150	01-2000-99-150	01-2000-99-150	01-2000-99-150	01-2000-99-150	01-2000-99-150	01-2000-99-150
2	Main Valve Body	1	01-2000-01-150	01-2000-01-150	01-2000-01-150	01-2000-01-150	01-2000-01-150	01-2000-01-150	01-2000-01-150	01-2000-01-150
3	24 Volt DC Coil	1	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150
4	Terminal Connector	1	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99
5	Air Valve Gasket	1	01-2600-52	01-2600-52	01-2600-52	01-2600-52	01-2600-52	01-2600-52	01-2600-52	01-2600-52
6	Air Valve Cap Screw	4	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03
7	Air Valve Cap Screw Nut	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03
8	Muffler Plate	1	01-3180-23	01-3180-23	01-3180-23	01-3180-23	01-3180-23	01-3180-23	01-3180-23	01-3180-23
9	Muffler Plate Gasket	1	01-3500-52	01-3500-52	01-3500-52	01-3500-52	01-3500-52	01-3500-52	01-3500-52	01-3500-52
10	Center Section	1	01-3153-23	01-3153-23	01-3153-23	01-3153-23	01-3153-23	01-3153-23	01-3153-23	01-3153-23
11	Center Block Glyd™ Ring	4	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55
12	Shaft	1	01-3800-03-07	01-3800-03-07	01-3800-03-07	01-3800-03-07	01-3800-03-07	01-3800-03-07	01-3800-03-07	01-3800-03-07
13	Shaft Stud (not shown)	2	N/A	01-6150-03	01-6150-03	N/A	01-6150-03	01-6150-03	01-6150-03	01-6150-03
14	Pistons/Outer	2	01-4570-01	01-4570-03	01-4570-04	01-4570-01	01-4570-03	01-4570-04	01-4570-03	01-4570-03
15	Pistons/Inner	2	01-3710-01-150	01-3710-01-150	01-3710-01-150	01-3710-01-150	01-3710-01-150	01-3710-01-150	01-3710-01-150	01-3710-01-150
16	Liquid Chamber	2	01-5000-01	01-5000-03	01-5000-04	01-5000-01	01-5000-03	01-5000-04	01-5000-03	01-5000-03
17	Discharge Manifold Elbow	2	01-5230-01	01-5230-03	01-5230-04	01-5230-01	01-5230-03	01-5230-04	01-5230-03	01-5230-03
18	Inlet Manifold Elbow	2	01-5220-01	01-5220-03	01-5220-04	01-5220-01	01-5220-03	01-5220-04	01-5220-03	01-5220-03
19	Manifold "T" Section	2	01-5160-01	01-5160-03	01-5160-04	01-5160-01	01-5160-03	01-5160-04	01-5160-03-70	01-5160-03-70
20	Clamp Band (Large) Assy.	2	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03
21	Large Clamp Band Bolt	4	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03
22	Large Clamp Band Nut	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6650-03-70	04-6650-03-70
23	Vertical Bolt	4	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03
24	Manifold O-Ring	4	*	*	*	01-1300-55	01-1300-55	01-1300-55	01-1300-55	01-1300-55
25	Valve Ball	4	*	*	*	01-1080-55	01-1080-55	01-1080-55	01-1080-56	01-1080-55
26	Valve Seat	4	01-1120-01	01-1120-03	01-1120-04	01-1120-01	01-1120-03	01-1120-04	01-1120-03	01-1120-03
27	Valve Seat O-Ring	4	*	*	*	01-1200-55	01-1200-55	01-1200-55	01-1200-56	01-1200-55
28	Diaphragm	2	*	*	*	01-1010-55	01-1010-55	01-1010-55	01-1010-56	01-1010-55
29	Back-up Diaphragm	2				01-1060-51	01-1060-51	01-1060-51		01-1060-51
30	Clamp Band (Small) Assy.	4	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03
31	SmallClampBandBolt1"	8	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03
32	Small Clamp Band Nut	8	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03
33	Vertical Bolt Nut	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6650-03-70	04-6650-03-70
34	Vertical Bolt Washer	4	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03
35	Muffler	1	01-3510-99	01-3510-99	01-3510-99	01-3510-99	01-3510-99	01-3510-99	01-3510-99	01-3510-99
36	Disc Spring	2	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08
37	Lock Washer	4	50-6760-03	50-6760-03	50-6760-03	50-6760-03	50-6760-03	50-6760-03	50-6760-03	50-6760-03
38	Flat Washer	4	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03
39	Fitting Air Inlet	2	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20
40	Adapter Block	4	01-2150-XX	01-2150-XX	01-2150-XX	01-2150-XX	01-2150-XX	01-2150-XX	01-2150-XX	01-2150-XX
41	Vent Plug (not shown)	1	01-7020-17	01-7020-17	01-7020-17	01-7020-17	01-7020-17	01-7020-17	01-7020-17	01-7020-17

¹Air valve assembly includes items 1, 2 and 3.

Solenoid-Operated Valve Assembly Options (Consists of Valve Body, Coil and Connector)

colonicia operatea raire / teconisi	estimate operation valve incoming operation (contains of valve body; com and controlled)								
Pump Models Designating Specialty Code #	Part Number	Description							
151	01-2000-99-151	24V AC / 12V DC Valve Assembly							
153	01-2000-99-153	24VAC/12VDCValveAssembly(Nema7)							
150	01-2000-99-150	24V DC Valve Assembly							
154	01-2000-99-154	24V DC Valve Assembly (Nema 7)							
157	01-2000-99-157	International 24V DC Valve Assembly**							
155	01-2000-99-155	110V AC Valve Assembly							
156	01-2000-99-156	110V AC Valve Assembly (Nema 7)							

Item 2 Coil Options

Pump Models Designating Specialty Code #	Part Number	Description
150	00-2110-99-150	24V DC Coil
151	00-2110-99-151	24V AC Coil
153	00-2110-99-153	24V AC, NEMA 7 Coil
154	00-2110-99-154	24V DC, NEMA 7 Coil
155	00-2110-99-155	110V AC Coil
156	00-2110-99-156	110V AC NEMA 7 Coil
157	00-2110-99-157	International 24V DC** 7 Coil

^{**}International 24V DC Coil is explosion proof per PTB File #EX-91.C.2027.

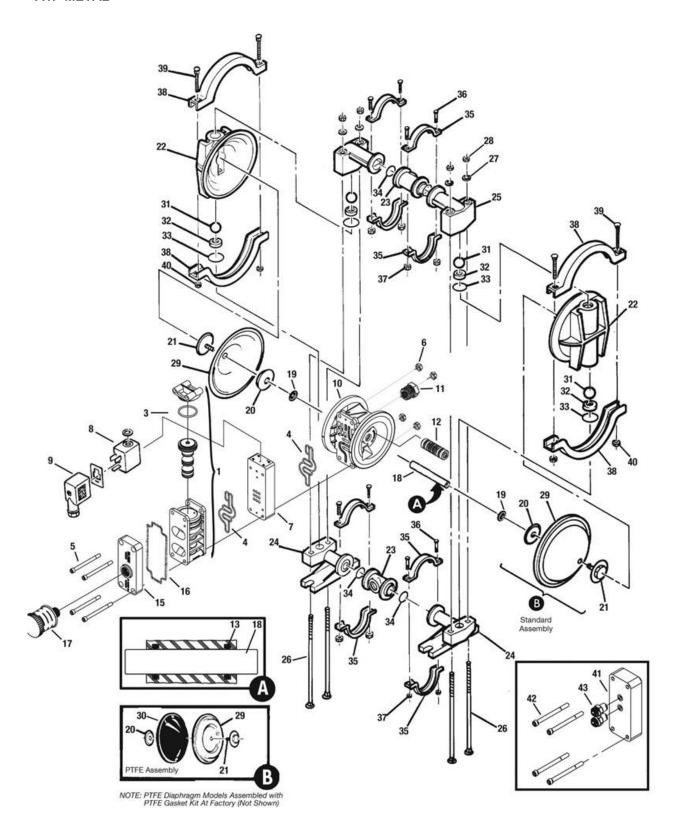
Item 1 Main Valve Body Options

Part Number	Description
01-2000-01-150	Main Valve Body
01-2000-01-154	Main Valve Body (Nema 7)

Adapter Block Options (T-Series)

Part Number	Description
01-2150-32	UHMW PE
01-2150-13	Acetal
01-2150-20	Polypropylene

^{*}Refer to end of section for elastomer options.


⁰¹²⁵ Specialty Code = Sanifl oFDA w/24V DC Solenoid 0150 Specialty Code = 24V DC Solenoid

NOTE: For pumps fit ted with wing nuts and tri-clamp connections please contact factory for exploded view drawing and part numbers. All boldface items are primary wear parts.

EXPLODED VIEW AND PARTS LIST

A1P METAL

EXPLODED VIEW AND PARTS LIST

				Rubber-Fitted		PTFE-Fitted			Food Processing		
Item		Part Decariation	Qty. Per	A1T/AAYYA/0150	A1T/SSYYA/0150	A1T/HHYYA/0150	A1T/AAYYA/0150	A1T/SSYYA/0150	A1T/HHYYA/0150	A1T/SSYYA/0125	A1T/SSYYA/0125
item	Part Description	Pump	P/N	P/N	P/N	P/N	P/N	P/N	Saniflex™ P/N	PTFE P/N	
1	Pro-Flo® AirValve Assembly1	1	01-2010-20	01-2010-20	01-2010-20	01-2010-20	01-2010-20	01-2010-20	01-2010-20	01-2010-20	
2	End Cap	1	01-2332-20	01-2332-20	01-2332-20	01-2332-20	01-2332-20	01-2332-20	01-2332-20	01-2332-20	
3	O-Ring, End Cap	1	01-2395-52	01-2395-52	01-2395-52	01-2395-52	01-2395-52	01-2395-52	01-2395-52	01-2395-52	
4	Gasket, Air Valve	2	01-2615-52	01-2615-52	01-2615-52	01-2615-52	01-2615-52	01-2615-52	01-2615-52	01-2615-52	
5	Screw, HSHSC, Air Valve 1/4-20	4	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	01-6000-03	
6	Nut, Hex, 1/4"-20	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	
7	Pro-Flo® Solenoid Spacer	1	01-2160-XX	01-2160-XX							
8	24 Volt DC Coil	1	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	00-2110-99-150	
9	Terminal Connector	1	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	00-2130-99	
10	Center Section Assembly	1	01-3140-20	01-3140-20	01-3140-20	01-3140-20	01-3140-20	01-3140-20	01-3140-20	01-3140-20	
11	Bushing, Reducer	1	01-6950-20	01-6950-20	01-6950-20	01-6950-20	01-6950-20	01-6950-20	01-6950-20	01-6950-20	
12	Pilot Sleeve Plug Assy	1	01-2285-99	01-2285-99	01-2285-99	01-2285-99	01-2285-99	01-2285-99	01-2285-99	01-2285-99	
13	Glyd™ Ring II	2	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	01-3220-55	
14	Retaining Ring	2	00-2650-03	00-2650-03	00-2650-03	00-2650-03	00-2650-03	00-2650-03	00-2650-03	00-2650-03	
15	Muffler Plate	1	01-3181-20	01-3181-20	01-3181-20	01-3181-20	01-3181-20	01-3181-20	01-3181-20	01-3181-20	
16	Gasket, Muffler Plate	1	01-3505-52	01-3505-52	01-3505-52	01-3505-52	01-3505-52	01-3505-52	01-3505-52	01-3505-52	
17	Muffler	1	02-3510-99	02-3510-99	02-3510-99	02-3510-99	02-3510-99	02-3510-99	02-3510-99	02-3510-99	
18	Shaft, Pro-Flo®	1	01-3810-03	01-3810-03	01-3810-03	01-3810-03	01-3810-03	01-3810-03	01-3810-03	01-3810-03	
19	Disc Spring	2	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	01-6802-08	
20	Inner Piston	2	01-3711-08	01-3711-08	01-3711-08	01-3711-08	01-3711-08	01-3711-08	01-3711-08	01-3711-08	
21	Outer Piston	2	01-4570-01	01-4570-03	01-4570-04	01-4570-01	01-4570-03	01-4570-04	01-4570-03	01-4570-03	
22	Liquid Chamber	2	01-5000-01	01-5000-03	01-5000-04	01-5000-01	01-5000-03	01-5000-04	01-5000-03	01-5000-03	
23	Manifold Tee Section	2	01-5160-01	01-5160-03	01-5160-04	01-5160-01	01-5160-03	01-5160-04	01-5160-03	01-5160-03	
24	Inlet Manifold Elbow	2	01-5220-01	01-5220-03	01-5220-04	01-5220-01	01-5220-03	01-5220-04	01-5220-03	01-5220-03	
25	Discharge Manifold Elbow	2	01-5230-01	01-5230-03	01-5230-04	01-5230-01	01-5230-03	01-5230-04	01-5230-03	01-5230-03	
26	Screw,SHCS(ChamberBolt)	4	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	01-6080-03	
27	Vertical Bolt Washer	4	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	01-6730-03	
28	Vertical Bolt Nut	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6650-03-70	04-6650-03-70	
29	Diaphragm	2	*	*	*	01-1010-55	01-1010-55	01-1010-55	01-1010-56	01-1010-55	
30	Back-up Diaphragm	2				01-1060-51	01-1060-51	01-1060-51		01-1060-51	
31	Valve Ball	4	*	*	*	01-1080-55	01-1080-55	01-1080-55	10-1080-56	01-1080-55	
32	Valve Seat	4	01-1120-01	01-1120-03	01-1120-04	01-1120-01	01-1120-03	01-1120-04	01-1120-03	01-1120-03	
33	Valve Seat O-Ring	4	*	*	*	01-1200-55	01-1200-55	01-1200-55	01-1200-56	01-1200-55	
34	Manifold O-Ring	4	*	*	*	01-1300-55	01-1300-55	01-1300-55	10-1300-56	01-1300-55	
35	Small Clamp Band Assy.	8	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	01-7100-03	
36	Small Clamp Band Bolt	8	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	01-6101-03	
37	Small Clamp Band Nut	8	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	01-6400-03	
38	Large Clamp Band Assy.	4	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	01-7300-03	
39	Large Clamp Band Bolt	4	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	01-6070-03	
40	Large Clamp Band Nut	4	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6400-03	04-6650-03-70	04-6650-03-70	
41	Adapter Block	1	00-2155-XX	00-2155-XX							
42	Adapter Block Bolts	4	01-6001-03	01-6001-03	01-6001-03	01-6001-03	01-6001-03	01-6001-03	01-6001-03	01-6001-03	
43	Adapter Block Air Fittings	2	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	00-2170-20	

¹Air valve assembly includes items 1, 2 and 3. *Refer to end of section for elastomer options.

0125 Specialty Code = Saniflo FDA w/24V DC Solenoid

0150 Specialty Code = 24V DC Solenoid

NOTE: For pumps fitted with wing nuts and tri-clamp connections please contact factory for exploded view drawing and part numbers.

All boldface items are primary wear parts.

Spacer & Adapter Block Options

opacci a Adaptei i	Spacer & Adapter Block Options							
Material	Spacer	Adapter						
Acetal	01-2160-13	01-2155-13						
Polypropylene	01-2160-20	01-2155-20						

Coil Options

ii Optiolio	i optiono							
Pump Models Designating Specialty Code #	Part Number	Description						
150	00-2110-99-150	24V DC Coil						
151	00-2110-99-151	24V AC Coil						
153	00-2110-99-153	24V AC, NEMA 7 Coil						
154	00-2110-99-154	24V DC, NEMA 7 Coil						
155	00-2110-99-155	110V AC Coil						
156	00-2110-99-156	110V AC NEMA 7 Coil						
157	00-2110-99-157	International 24V DC Coil**						

^{**}International 24V DC Coil is explosion proof per PTB File #EX-91.C.2027.

ELASTOMER OPTIONS

A1 METAL

Material	Diaphragm P/N	Valve Ball P/N	Valve Seat* P/N	Valve Seat O-Ring P/N	Manifold O-Ring P/N
Polyurethane	01-1010-50	01-1080-50		01-1200-50	01-1300-50
Buna-N	01-1010-52	01-1080-52		01-1200-52	01-1300-52
FKM®	01-1010-53	01-1080-53	01-1120-53*		
Wil-Flex™	01-1010-58	01-1080-58		01-1200-58	01-1300-58
Saniflex™	01-1010-56	01-1080-56		01-1200-56	01-1300-56
PTFE	01-1010-55	01-1080-55		01-1200-55	01-1300-55
Stainless Steel			01-1120-03		
Aluminum			01-1120-01		
Alloy C			01-1120-04		

^{*}Use in conjunction with seat spacer (P/N 01-1120-21-500)

SECTION 10

ELECTRICAL INFORMATION

NEMA 4 / UL / CSA

		Voltage ±10%				Resistivity		
Part Number	DC	AC		Power (W)	DC		AC	
	DC	60 Hz	50 Hz	±10%	DC	Inrush	Holding	(Ω)
00-2110-99-150	24	48	44	4.8	.20	.20	.20	121
00-2110-99-151	12	24	22	4.8	.40	.40	.40	32
00-2110-99-155	60	120	110	4.8	.08	.08	.06	840

NEMA 7 / UL / CSA

		Voltage ±10%				Resistivity		
Part Number	DC	AC		Power (W)			AC	
	DC	60 Hz	50 Hz	±10%	DC	Inrush	Holding	(Ω)
00-2110-99-153	12	24	22	7	.60	.55	.32	19
00-2110-99-154	24	48	44	7	.30	.30	.18	75
00-2110-99-156	60	120	110	7	.12	.13	.06	475

INTERNATIONAL EXPLOSION PROOF / CENELEC / PTB FILE # EX-91.C.2027

Part Number	DC Voltage ±10%	Power (W) ±10%	Curre	Resistivity (Ω)	
Part Number	DC Voltage ±10%	Power (W) ±10%	Inrush	Holding	Resistivity (12)
00-2110-99-157	24	3.3	.135	.135	177

ACCUFLO A1 Clamped Metal

PSG 22069 Van Buren Street Grand Terrace, CA 92313-5651 USA P: +1 (909) 422 -1730 psgdover.com

Where Innovation Flows