Seal-less Design
The Unique seal-less design features a double stainless steel bellows which ensures durability, safety and product containment. The C Series provides very high suction and discharge pressures which allows it to self-prime and fully strip lines, maximizing product recovery.

Run Dry Capability
The C Series can run dry for up to 5 minutes, and the self-compensating eccentric disc principle provides consistent flow rates over a long period of time. The flow rate is extremely accurate even at low speeds.

Dependable
There are fewer moving parts, which results in reduced maintenance and downtime.

Advantages:
- Eccentric Disc design allows for consistent flow and improved energy savings
- Extremely gentle, pulse-free flow to protect shear-sensitive products
- Reduced maintenance with no mechanical seals or timing gears
- Easy to install

Options:
- ISO PN 20 flanges / ANSI 150 Flange
- ISO PN 16 flanges
- Heating Jacket
Construction:
- Ductile iron construction
- Shaft sealed by double Stainless Steel bellows
- O-ring seals in FKM or coated FKM

Features & Benefits:
- Seal-less design eliminates leakage
- Ability to strip and drain transfer piping/tubing
- Line-stripping capabilities
- Self-priming
- Strong Suction and Discharge Pressure
- Shear-sensitive handling
- Consistent flow rate independent of pressure
- Low linear speed
- Precise dosing
- Accurate volume metering with high turn down
- Dry-run capable
- Maintains performance over time
- Effective with both high- and low-viscosity fluids
- Easy integration

Operation:
- **Principle:** Eccentric Disc, positive displacement
- **Installation:** Can be base mounted or cart mounted for mobility

Applications:
Suitable for most chemical and industrial transfer applications, in particular those that require consistent non-pulsing flow and gentle fluid handling (low shear rates), such as:
- Isocyanates
- Polyols
- Alcohol
- Acid
- Additives
- Solvents
- Glues: Starch, latex, etc.
- Paint & coatings: Paints, inks, resins, etc.
- Methacrylate
- Soda
- Ether
- Detergents

Mouvex Technology
Eccentric disc pumps consist of a cylinder and pumping element mounted on an eccentric shaft. As the eccentric shaft is rotated, the pumping element forms chambers within the cylinder, which increase in size at the intake port, drawing fluid into the pumping chamber. The fluid is transported to the discharge port where the pumping chamber size is decreased. This action squeezes the fluid out into the discharge piping.

Mouvex Principle
Performance Data

<table>
<thead>
<tr>
<th>Pump</th>
<th>Displacement</th>
<th>Maximum Flow Rate</th>
<th>Maximum Temperature</th>
<th>Maximum Differential Pressure</th>
<th>Maximum Speed</th>
<th>Ports Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4a</td>
<td>0.108 liters</td>
<td>4 m³/hr</td>
<td>100°</td>
<td>9 bar</td>
<td>750 rpm</td>
<td>50 DN 2 in</td>
</tr>
<tr>
<td>C8a</td>
<td>0.178 liters</td>
<td>8 m³/hr</td>
<td>100°</td>
<td>5 bar</td>
<td>750 rpm</td>
<td>50 DN 2 in</td>
</tr>
<tr>
<td>C4a-HT</td>
<td>0.108 liters</td>
<td>4 m³/hr</td>
<td>160°</td>
<td>9 bar</td>
<td>750 rpm</td>
<td>50 DN 2 in</td>
</tr>
<tr>
<td>C8a-HT</td>
<td>0.178 liters</td>
<td>8 m³/hr</td>
<td>160°</td>
<td>5 bar</td>
<td>750 rpm</td>
<td>50 DN 2 in</td>
</tr>
<tr>
<td>C12a</td>
<td>0.411 liters</td>
<td>12 m³/hr</td>
<td>100°</td>
<td>9 bar</td>
<td>530 rpm</td>
<td>65 DN 2 1/2 in</td>
</tr>
<tr>
<td>C18a</td>
<td>0.617 liters</td>
<td>18 m³/hr</td>
<td>100°</td>
<td>6 bar</td>
<td>530 rpm</td>
<td>65 DN 2 1/2 in</td>
</tr>
</tbody>
</table>

Below:
- 316 Ti
- Disc: GS Ductile Iron
- Cylinder: GS Ductile Iron
- Body Case: GS Ductile Iron
- O-rings: FKM, FEP coated FKM
- Flanges: PN 16, PN 20, ANSI 150

Dimensions

<table>
<thead>
<tr>
<th>Pump</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Port</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>C4a</td>
<td>20 mm</td>
<td>6</td>
<td>233</td>
<td>242</td>
<td>67</td>
<td>254</td>
<td>120</td>
<td>127</td>
<td>150</td>
<td>172</td>
<td>152</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>43 kg</td>
<td></td>
</tr>
<tr>
<td>C8a</td>
<td>20 mm</td>
<td>6</td>
<td>233</td>
<td>259</td>
<td>67</td>
<td>254</td>
<td>120</td>
<td>127</td>
<td>150</td>
<td>172</td>
<td>152</td>
<td>4</td>
<td>4</td>
<td>50</td>
<td>46 kg</td>
<td></td>
</tr>
<tr>
<td>C12a</td>
<td>35 mm</td>
<td>10</td>
<td>310.5</td>
<td>384</td>
<td>109</td>
<td>363</td>
<td>175</td>
<td>12</td>
<td>101</td>
<td>157</td>
<td>239</td>
<td>220</td>
<td>6</td>
<td>6</td>
<td>65</td>
<td>115 kg</td>
</tr>
<tr>
<td>C18a</td>
<td>35 mm</td>
<td>10</td>
<td>310.5</td>
<td>384</td>
<td>109</td>
<td>363</td>
<td>175</td>
<td>12</td>
<td>101</td>
<td>157</td>
<td>239</td>
<td>220</td>
<td>6</td>
<td>6</td>
<td>65</td>
<td>120 kg</td>
</tr>
</tbody>
</table>

N X P